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Abstract

Extended Kalman filter is one of the standard non-linear estimation algorithm used in

realtime target tracking. If it is to be used in realtime applications, the estimation time

has to be very less (of the order of milliseconds). The objective of the work presented in

this report is to design and realize a scalable extended Kalman filter (EKF) for non-linear

tracking applications. A scalable design facilitates reusability of the design for varying

inputs and models. To achieve this, a parameterizable architecture was used for the im-

plementation of individual modules of the EKF building blocks. These modules mainly

comprise of matrix operations such as matrix addition, multiplication and inversion. How-

ever, certain sections of the EKF algorithm cannot be modularized as they are specific to

the inputs and models used. Here, Jacobian calculation and prediction of states in terms

of measurement parameters, are the two main non-modularizable sections.

A performance comparison of the VHDL implementation with that of Matlab imple-

mentation is done in terms of estimated state values. The observations indicate similar

outputs for FPGA and Matlab implementations. Further, timing comparison show compa-

rable performance between FPGA and Matlab implementations. The FPGA implementa-

tion at 34.417µs is slightly faster than the Matlab implementation which takes ≈ 38.09µs

to complete one iteration. Resource utilization and approximate execution times are also

summarized. The maximum frequency of operations obtained was 330.834MHz. The

time taken for a single iteration was obtained as 34.417µs.

vi



Chapter 1

Introduction

State estimation is a key aspect of any tracking application. States of a system are pa-

rameters that completely describe the behaviour of a system at any given time. In the

context of tracking, these parameters are mainly position, velocity, bearing, and perhaps

acceleration. Often, models cannot completely capture the dynamics of a system and

hence do not account for deviations in the state values. Measurements are most often

noisy and do not provide accurate state values either. In such situations, state estima-

tion algorithms such as Kalman filters, extended Kalman filters, unscented Kalman filters

provide a means of using the measurement and state update models to estimate state

assuming Gaussian noise.

Most tracking systems find compact portable units more desirable as they promote

agility and freedom of movement of a system. This necessitates tracking algorithms to

be on an independent hardware unit. Porting estimation algorithms to FPGA’s, that

provide processing power along with portability, is a viable option for making a tracking

system autonomous, and is the subject of interest in this report. We specifically focus on

extended Kalman filter.

1.1 Literature review

Hardware implementation of extended Kalman filters (EKF) has been an active research

topic for the past decade [1], [2], [3], [4]. One of the papers discusses the computational



complexity incurred in implementation of EKF and possible solutions such as hardware

(FPGA) - software (DSP) effort distribution, use of embedded software processors and

use of C-to-Hardware for ease of design [1].

Simultaneous localization and tracking (SLAM) is another active area of research on

mobile robotics that extensively use hardware implementation of EKF estimation algo-

rithms for tracking. Other works in [2], [3] and [4] describe use of EKF for tracking

in systems that use SLAM. In [2] the authors describe an FPGA based EKF algorithm

implementation for SLAM problem. Odometric sensor and exteroceptive sensor outputs

are used as the measurements obtained for the estimation of states in a SLAM prob-

lem for a mobile robotic system. They compared EKF performance on FPGA with that

on Pentium M 1.6GHz processor and ARM920T 200MHz, in terms of power consump-

tion for each feature (0.7mW in FPGA as against 54mW for Pentium M processor and

5.7mW for ARM920T). The authors focused on reusing on-chip data to bring down the

computation complexity associated with the covariance update stage, which is the most

computationally expensive stage for SLAM application. The hardware architecture uses

a light embedded processor to compute the prediction and measurement models with

the associated Jacobians. The number of features computed is 1800. The authors have

used Handel-C language to describe the hardware architecture. The target device used is

EP2S90F1020C4.

The authors of paper [3] describe use of EKF in SLAM for a mobile robotic device. The

implementation is based on NIOS II softcore ported on Altera FPGA. EKF algorithm has

been coded in C. Additional hardware accelerator blocks have been implemented for un-

specified blocks of EKF algorithm. The authors have experimented with C-to-Hardware

and custom instructions to generate the hardware accelerator blocks. The inputs for the

robot is from odometer to get position information and image sensors for fixing the land-

marks. A performance comparison (in terms of speed) of this FPGA implementation with

a purely software approach involving Pentium IV 3GHz system was done by the authors.

The purely software approach on a PC was found faster at 0.63GHz, but the FPGA based

system operating at 50MHz was found acceptable for indoor robotic applications.

In another paper [4], the authors have described an FPGA based implementation

of Sequential EKF update algorithm for self localization task for small robots. The
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system performs fusion of data taking inputs from ultrasonic (sonar) and LASER range

finder. The authors have dealt only with the localization problem and only the gain and

update blocks of EKF. The computation of Jacobian matrix is done offline on a Nios II

software and the results are used in the FPGA implementation. Gain calculation in the

EKF algorithm is done using FSM and the matrix inversion is obtained by calculating

the adjoint and determinant of the matrix. The design was realized on a Cyclone IV

EP4CE22F17C6N FPGA. Analysis of hardware resource used and power consumed was

done by the authors. The authors compared individual modules that computes gain,

states, and covariance with respect to the number of DSP blocks used, maximum clock

frequency and power consumption in mW. They concluded that the gain module uses

more DSP’s (29%) as compared to states module (4%) and covariance module (12%).

However they found the power consumption of gain module and covariance modules to

be comparable at 170.87mW and 170.46mW respectively.

These three references explore hardware-software division of efforts and the effect on

performance of the system. The most widely used and preferred estimation algorithm

for non-linear systems, seems to be EKF. However, the popular approach seems to be

the use of embedded processor core such as Nios II or use of C to Hardware or Matlab

to hardware approach. Also the prediction part of the algorithm seems to be mostly

performed externally and mainly the gain calculation and update stages are implemented

on FPGA. This could be due to the much larger matrix dimensions owing to large state

vectors.

This report however addresses the implementation of a scalable Extended Kalman filter

with the aim of realizing a complete hardware solution to achieve a real-time system with

fast response time.

1.2 Extended Kalman filter

Kalman filter, a linear state estimation algorithm, has been widely used to estimate a

system’s state by drawing upon in-exact measurements and an appropriate mathematical

model. In Kalman filter, estimation process is the propagation of expectation or mean

of the state and covariance of the state, in time, for linear systems. These parameters

together describe the system behaviour. The expected value or the mean value denotes

3



the estimate of the state and the covariance denotes the degree of uncertanity in the

estimated state. The equations involved in the Kalman filter deal with computing the

a posteriori state estimate as a function of linear combination of a priori estimate and

a weighted difference of the measurement at that time step and the prediction obtained

from the a priory estimate [7]. The underlying assumptions are that the dynamic system

is linear, the noises involved are zero mean, Gaussian, white and uncorrelated.

Kalman filter algorithm provides the optimal solution for estimation of a linear system.

However, these equations cannot be directly extended to non-linear systems. To deal with

non-linear systems, the approach most commonly used is to approximate all inherent non-

linearities of the system with a linear model. Linearization of non-linearities is done using

the Taylor series approximations.

Algorithm

Extended Kalman filter is an extension to the Kalman filter algorithm that incorporates

linearization of the system about the nominal state trajectory, which is the Kalman filter

estimate at every time step. The principle behind EKF is that the mean and covariance

of the linearized system is approximately equal to the non linear system’s true mean and

covariance.

Suppose the system model is of the form

Xk = f(Xk−1, vk−1) (1.1)

where,

f is state transition model or process model,

Xk−1 is the estimate of the state vector during the previous time step ie k − 1

Xk is the current state estimate i.e. at time step k

vk−1 represented as vk−1 ∼ N (0, Qk), is zero mean, Gaussian, white, uncorrelated process

noise.

Zk = h(Xk, wk) (1.2)

where,

h is the observation or measurement model

Zk is the estimated measurement vector at time step k

4



wk is the zero mean, Gaussian, white, uncorrelated measurement noise represented as

wk ∼ N (0, Rk)

On performing Taylor series expansion around the value X = X̂k−1 and considering

vk−1 = 0, we get

Xk = f(Xk−1, 0) +
∂f

∂X

∣

∣

∣

∣

X=X̂k−1

(Xk−1 − X̂k−1) +
∂f

∂v

∣

∣

∣

∣

X̂k−1

vk−1 (1.3)

and the measurement model expanded around the new Xk represented as X̂k and wk = 0,

we get

Zk = h(X̂k, 0) +
∂h

∂X

∣

∣

∣

∣

X̂k

(Xk − X̂k) +
∂h

∂w

∣

∣

∣

∣

X̂k

wk (1.4)

It is seen from equations 1.3 and 1.4 that implementation of Extended Kalman filter

involves the computation of derivative matrices or Jacobians.

The set of equations in the Extended Kalman filter implementation can therefore be

summarized as

• Time update

x̂k = Fxk−1 (1.5)

P̂k = ∇FPk−1∇FT +Q (1.6)

where,

F is the state transition matrix,

xk is the state vector at instant k,

P̂k is the covariance matrix at instant k,

Q is the process noise matrix.

• Measurement update

– Computing gain

G = P̂k∇HT [(∇HP̂k∇HT ) +R]−1 (1.7)

where,

H is the measurement matrix,

R is the measurement noise matrix,

G is the gain,

∇H is the Jacobian of measurement matrix.
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– Update estimate with measurements

xk = x̂k + [G(Zk − (Hx̂k))] (1.8)

– Compute error covariance for updated estimate

Pk = P̂k − (G∇HP̂k) (1.9)

where, ∇F is the Jacobian of state transition matrix and ∇H is the Jacobian of

measurement matrix [7]. The above set of equations of EKF, give fairly good estimation

for most non-linear systems and EKF is therefore widely used.

1.3 FPGA

Field programmable gate array (FPGA), is made up of a large number of configurable

logic blocks along with a distributed interconnect structure. Configurable logic blocks

(CLB) are the basic units of FPGA’s and contain a cluster of slices or logic cells. Slices

or logic cells contain a highly flexible switch matrix, flip-flops, multiplexers, and lookup

tables (LUT’s). The switch matrix can be configured to form combinatorial logic, shift

registers or memory. The CLB’s are connected to each other and external world by inter-

connects. The interface to the external world is via Input-Output Blocks (IOBs). Block

RAM provide the on-chip memory on the FPGAs. Other resources available on FPGA

includes multipliers, global clock buffers and boundary scan logic. The matrix of CLBs

and the mesh of interconnects, lend to the programmability of FPGAs [8]. Their re-

configurability, reusability and a shorter development time as against ASIC’s, make them

an attractive choice for quick design realizations.

The objective of this project is to design efficient hardware for extended Kalman

filter. The focus is on introducing maximum re-usability of the design by using a modular

approach. The idea is to make individual blocks scalable so that they can be reused in

the design as well as in a different system model. Possibility of introducing parallelism in

discrete modules is also explored in this report.

6



Organization of report

Chapter 2 describes initially the high level view of the complete EKF algorithm in the form

of modules. The various blocks in the modules and their implementation, are discussed.

Implementation details such as data representation, target device resources and IP cores

used are also discussed.

Simulation results, timing analysis and hardware utilization are discussed in chapter

3. Conclusions and future scope are mentioned in chapter 4.
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Chapter 2

Implementation of EKF on FPGA

2.1 Extended Kalman filter implementation

The extended Kalman filter is most often used when the states of the dynamic system

to be estimated, involves non-linearity in them. In this implementation therefore, a con-

stant turn model was used as the state transition model. The observations thus obtained

were in range r and bearing θ rather than the cartesian x and y position. The extended

Kalman filter algorithm tackles the non-linearity of the system by using the derivative of

the state transition and measurement model. This involves computation of Jacobian of

state transition matrix (F) and measurement matrix (H). The state transition used was

split into constant velocity and constant turn (manoeuvring) parts. However, for estima-

tion, only the constant velocity model was used and hence necessitated the derivation of

Jacobians for only the constant velocity state transition model.

The input state vector in the cartesian coordinate system is

x =
[

x vx y vy

]T

(2.1)

The state transition model used i.e. the constant velocity model is described as

F1 =

















1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

















(2.2)

The Jacobian of state transition model with respect to each of the input states is the

same as the state transition model. The constant turn state transition model [5] used to



generate the true states and measurements is

F2 =



















1
sin(ΩT )

Ω
0 −1− cos(ΩT )

Ω

0 cos(ΩT ) 0 − sin(ΩT )

0
1− cos(ΩT )

Ω
1

sin(ΩT )

Ω

0 sin(ΩT ) 0 cos(ΩT )



















where Ω is the constant turn rate. This model is not used in estimation. It is only used

to generate ground truth in a Matlab program, which is finally used for performance

comparison.

The measurement is in terms of range and bearing and is given by

z =





√

x2 + y2

tan−1(
y

x
)



 (2.3)

The Jacobian of the measurement model ∇H is

∇H =





x√
x2+y2

0 y√
x2+y2

0

−y

(x2+y2)
0 x

(x2+y2)
0



 (2.4)

Trigonometric calculation on digital systems are done using CORDIC algorithms - an

acronym for COordinate Rotation DIgital Computer. Xilinx logicores set has a Cordic

core, that takes in values in fixed point format and computes the output - also in fixed

point form. The arctan logicore requires the input to be between the range -1 and +1.

Also, the input word is expected to have exactly 2 integer bits for any word length. The

output is a fixed point value with 3 bit integer and (wordlength − 3) fraction bits. As

the format used in the implementation was 32 bit floating point, logicores to convert from

floating point value to fixed point value and vice versa were used.

The Jacobian evaluation requires the computation of square root of the sum of squares

of the x and y coordinates. The Xilinx floating point logicore includes square root compu-

tation functionality as well, which is used in the implementation. Jacobian evaluation is

problem specific and is one section of the EKF algorithm that could not be modularized

and generalized. Separate finite state machines were designed for obtaining the arctan of

the ratio of x and y coordinates and for computing the Jacobian of measurement model.

These blocks were then integrated in the main finite state machine. Apart from the Ja-
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cobian computations, the other parts of extended Kalman filter implementation include

prediction of new state and covariance, gain evaluation and state and covariance update.

The equations thus computed in the extended Kalman filter implementation are sum-

marized in Table 2.1.

The control path finite state machine (FSM) for extended Kalman filter is as shown

in Figure 2.1. The control path is built as a Moore machine i.e. the control path output

depends only on the current state of the FSM. Each of the states in the main state

machine, either enables a sub-state machine designed for matrix operations or enables

registers to store intermediate values. State transition occurs either with clock transition

or when there is an assert from the data path indicating completion of a matrix operation.

The data path of extended Kalman filter implementation is shown in Figure 2.2. The

data path includes the modules to compute the state vector prediction, covariance matrix

prediction, Jacobian calculation, prediction of state in terms of the measurement param-

eters of range and angle, matrix inversion by LU decomposition, gain module and finally

the state and covariance updates. Barring the Jacobian and prediction of state in terms of

the measurement parameters of range and angle, every other module is built in a generic

manner using the parameter feature of VHDL. If the design needs to be modified to a

different model, only some parts needs to be changed.

The hardware implementation of extended Kalman filter was realized with Virtex-6

FPGA (xc6vlx75t and xc6vl130t) as the target device. Virtex-6 FPGAs are some of the

higher end FPGA’s from the Xilinx family of FPGAs [8]. A single configurable logic

block (CLB) in a Virtex-6 FPGA comprises of two slices, each containing four 6-input

LUTs and eight flip-flops [13]. The logic resources available on xc6vlx75t include 11,640

slices, 74,496 logic cells, 93,120 CLB flip-flops and 288 DSP48E1 Slices. A larger variant

of Virtex 6 FPGA, xc6vl130t, includes 20,000 slices, 128,000 Logic cells, 160,000 CLB

flip-flops and 480 DSP48E1 Slices.

10



Table 2.1: Equations and Computational complexity in EKF for state dimension M

Equation Computational Complexity Dimensions

x̂k = F ∗ xk−1 1 Matrix multiplication (M ×M) * (M × 1)

∂H 2 Multiplications Scalar

1 Addition Scalar

1 Square root Scalar

4 Divisions Scalar

x̂zk =

√
(x)2+(y)2

arctan( y
x
)

CORDIC function Scalar

P̂k = ∇F ∗Pk−1 ∗ ∇FT +Q 2 Matrix multiplications (M ×M) * (M ×M)

(M ×M) * (M ×M)

1 Matrix Addition (M ×M)

S = ∇H ∗ P̂k ∗ ∇HT +R 2 Matrix multiplications (N ×M) * (M ×M)

(N ×M) * (M ×N)

1 Matrix Addition (N ×N)

inv(S) = (S)−1 1 Matrix Inverse (N ×N)

G = P̂k ∗ ∇HT ∗ inv(S) 2 Matrix multiplications (M ×M) * (M ×N)

(M ×N) * (N ×N)

xk = x̂k + [G ∗ (zmeasured − x̂zk)] 1 Matrix multiplication (M ×N) * (N × 1)

1 Matrix Subtraction (N × 1)

1 Matrix Addition (M × 1)

Pk = P̂k − (G ∗ ∇H ∗ P̂k) 2 Matrix multiplications (M ×N) * (N ×M)

(M ×M) * (M ×M)

1 Matrix subtraction (M ×M)
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start

xk_1 = x_init:x_update
 p_old = p_init:p_update

Xp = F*xk_1  mul_done = 0

Jacobian

 mul_done = 1

 jacobian_done = 0

x_z_predict

 jacobian_done = 1

 angle_done = 0

pnew = F*p_old*Ft+Q

 angle_done = 1

 pnew_done = 0

S = H*pnew*Ht+R

 pnew_done = 1

 s_done = 0

inv(S)

 s_done = 1

 inv_done= 0

gain = pnew*Ht*inv_s 
err = z-x_z_predict

 inv_done= 1

 gain_done = 0

x_update = Xp + (gain*err)
p_update = pnew -(gain*H*pnew)

 gain_done = 1

done

Figure 2.1: Finite state machine depicting control path of EKF implementation
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Figure 2.2: Major blocks in the data path of EKF implementation
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2.2 Data representation format

IEEE 754 single precision floating point format was used in the hardware implementation.

This format includes 1 bit to represent sign of the number S, 8 bits to represent the

exponent E and 23 bits to represent the mantissa b. The word length Wlen is therefore of

32 bits. A real number is thus represented as

Value = (−1)S ∗ 2E ∗ b0b1b2.....b22 (2.5)

Here the exponent is biased by 127 , which is incremented or decremented appropriately

to represent the floating point number. The range available with this format is quite large

(maximum positive number that can be represented being ≈ 3.4 ∗ 1038 ). The current

implementation of extended Kalman filter does not require this high range. In fact, such

a large word length increases the resource utilization and execution time exponentially.

Usage of half precision floating point (16 bits word length with 5 exponent bits and 10

fraction bits) or lower word length fixed point format would have been sufficient for this

implementation. However, adopting the single precision format provides the advantage of

utilizing readily available Xilinx IP cores for numerical operations [9]. The implementation

described in this report, has benefited from the use of many of these logicores [9], which

provide reliable and accurate results on numerous arithmetic operations. Hence the use

of single precision floating point data format makes sense.

2.3 Xilinx IP cores

IP cores (or logicores), are synthesizable logical blocks or units that are designed to per-

form some specific task, generally in the most optimum manner. They have standard

interfaces or handshake signals which enable them to be incorporated in a design seam-

lessly. Xilinx provides a number of useful logicores suitable for different data formats. For

the single precision floating point operations, logicores are available to perform addition,

multiplication, subtraction, division, square root and more. Further, there are also cores

that convert data format from single precision to fixed point and vice versa. In addition,

logicores are also available to tackle trignometric functions under the CORDIC logicore.

The implementation described in this chapter, utilizes all of these features provided under

the floating point logicore.
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From the data path figure 2.2, it can be seen that every module utilizes the arithmetic

logicores while the Jacobian and prediction block uses arctan from the CORDIC IP core

along with the associated data format conversions, in addition to the arithmetic logicores.

Most of the floating point math function logicores, provide customizability in terms of

extent of utilization of DSP blocks and architecture optimization in terms of speed and

latency. Choosing latency optimized architecture results in increased resource utilization.

The floating point logicores provide options of latency and rate configuration, which

determine the number of clock cycles required to generate an output, given an input.

This latency can be set between 0 and specified maximum value, which is different for

different operations, data widths and DSP usage [9]. The resource usage and maximum

clock rate are affected by chosen latency values. The LUT and FF usage reduces with

reduction in latency and so does the maximum operation frequency. This was observed

in the implementation of EKF, where change in latency from maximum to a value of 2

drastically reduced the maximum operating frequency in addition to reducing the resource

utilization.

2.4 Building blocks

The extended Kalman filter implementation mainly involves matrix operations such as

matrix multiplication, matrix addition, matrix subtraction and matrix inversion. These

operations in turn utilize basic arithmetic operations such as addition, multiplication,

subtraction and division. Xilinx Logicore IP floating point operator version 5.0 has been

used to perform the basic arithmetic opertions. The interface to the cores typically

include input arguments, output argument, and handshake signals. Among the available

handshake signals, signal for enabling the core (CE), signal for clearing the previous

status of the core (SCLR), and ready signal (RDY) generated by the core to indicate the

completion of operation, were used. The implementation follows the control path - data

path approach. The control path is concerned with handshake signals such as ready, clear,

and enable. The data path in turn comprises of multiplexers, IP cores, registers and so on

and directly handle the data. The entire design is synchronous and finite state machine

(FSM) based. Though there is a lot of scope for introduction of concurrency, the design

introduces concurrency only in matrix addition and subtraction modules leaving the rest
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of the design to follow a purely serial form of execution. Hence, at any given time, only

one state - performing one operation is active in the sequential part.

2.4.1 Matrix addition

Matrix addition and subtraction blocks were built around the floating point adder and

subtractor logicores provided by Xilinx. From the data path figure 2.2, it can be seen

that except for the X predict block and Jacobian and prediction block, every other block

needs matrix addition or matrix subtraction module.

Initially a serial adder/ subtractor was built which used a control path - data path

format. This design used only one adder/subtractor and data was provided sequentially

to be processed. Subsequently, in keeping with the endeavour towards introducing par-

allelism, a different design was used, where the data was provided to the adder module

all at once and as many adders / subtractors as the matrix dimension, were instantiated.

This approach works well as long as the matrix size is small. Resource utilization can

get prohibitive for large matrix dimensions. A comparison of number of cycles versus

resource utilization was performed for a 2 by 2 matrix of 32 bit floating point numbers.

The observations are as tabulated in Table 2.2. It can be seen from table 2.2 that serial

implementation uses fewer hardware resources with 0.22% of available slice registers and

1.134% of available slice LUTs, but is 10.4 times slower than the parallel implementa-

tion. The parallel implementation is resource greedy with usage of 0.32% of available

slice registers and 3.857% of available slice LUTs.

Table 2.2: Serial and parallel adder comparison for 2 × 2 matrix of 32 bit word length

numbers

Adder Type Number of cycles Resource Usage

Serial 26 Slice register = 209; Slice LUT = 528

Parallel 2.5 Slice register = 300; Slice LUT = 1796
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2.4.2 Matrix multiplication

Matrix multiplication is one of the most important module in the EKF implementation.

From the data path figure 2.2, it can be seen that the major modules of state and co-

variance prediction, gain calculation and covariance update, uses matrix multiplication

of varying matrix dimensions. This calls for a generalized multiplier design that can be

reused for multiple matrix dimensions. Usage of generics and parameters helped ensuring

reusability across multiple matrix dimensions. However, the objective of introducing con-

currency was not successful. Deploying as many floating point multipliers as the number

of columns in first matrix, still necessitates the process of accumulation of products to

be serial. This serial addition defeats the purpose of parallel multiplication. Hence a

sequential design with one multiplier and one adder logicore, was adopted.

In literature Faddeev’s algorithm [6],[14] and Systolic array architecture [6],[14] are

popular dense matrix multiplication algorithm. Though faster, the method would in-

volve use of multiple multipliers and adders in each processing element in the output

matrix. There may be re-usability to some extent but at the cost of making the design

more complex by introducing multiplexers, demultiplexers and many more registers with

their corresponding addressing logic. Newer implementations, where matrix multiplica-

tion plays an important role [2], [4], use methods such as C to hardware or hardware

software co-design and hence do not specify the method used for matrix multiplication.

The matrix multiplication algorithm used in this implementation emulates the nested

for loop algorithm used in high level languages. The pseudocode for matrix multiplication

is as in listing 2.3.

The module is built around a multiplier and an adder logicore and computes the

multiplication serially. An user defined array type was defined for the matrices, the

dimensions of which were decided using the ‘generic’ feature provided by VHDL. The

indices to access specific matrix locations, were generated by counters. Comparators were

used to keep track of the index limit. The control signals for enabling and clearing the

counters, accumulation registers and the logicores, were generated from the control path

of matrix multiplication finite state machine. Status signals from the data path indicating

the status of processes such as multiplication and addition, or the comparator status for
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Table 2.3: Pseudocode for matrix multiplication

arg0 = mat mult ( arg1 , arg2 , row1 , col1row2 , co l 2 )

f o r i =1:1 : row1

f o r j =1:1 : co l 2

arg0 ( i , j )=0;

f o r k=1:1 : col1row2

arg0 ( i , j )= arg0 ( i , j ) + ( arg1 ( i , k )∗ arg2 (k , j )
end

end

end

each index comprised the input signals to the control path finite state machine. A block

diagram of the multiplier design is as shown in Figure 2.3.
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Figure 2.3: Matrix multiplication design

2.4.3 Matrix Inversion

Computation of inverse of a matrix S implies finding a matrix X such that the product of

S and X results in an Identity matrix I. Mathematically, this is expressed as S ∗X = I,
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where S, X and I belong to R
N×N . This expression is similar to the simultaneous linear

equations form AX = B, whose solution is computed using Gauss elimination method.

The process of forward elimination is the most computationally intensive part of Gauss

elimination algorithm. This process inherently uses both the left hand side and right hand

side of the equation AX = B. If B is a vector (i.e. matrix of dimension N × 1), then

the one time computational expense incurred during forward elimination is acceptable.

However, as in the case of matrix inverse computation, if the right hand side of the ex-

pression AX = B is also an N ×N matrix, then the Gauss elimination process has to be

repeated N times - once for every column vector. The computation involved can thus get

prohibitive. This calls for an algorithm that factors the matrix, independent of the right

hand side, and finally uses the factored parts repeatedly for the different right hand side

columns. LU decomposition process satisfies this requirement and is often called a better

method to implement Gauss elimination method.

LU decomposition method is an O(N3) process while Gauss elimination is an O(N4)

method, where N is considered the number of rows or columns. Also designing a general

purpose matrix inversion algorithm is one of the key steps in realization of modular EKF.

In [11] one of the papers on hardware implementation of matrix inversion algorithm,

the authors have used Gauss Jordan (GJ) elimination algorithm as a low complexity so-

lution for matrix inversion. The low number of memory accesses and use of only three

different arithmetic operations viz. addition, multiplication and division, has been pro-

posed as the advantage of using GJ elimination method. The Matlab VHDL code auto-

matic generator was used to generate VHDL code. IP cores have been used to perform

arithmetic operations. The design was ported and tested on Virtex 5 at a clock rate of

50MHz. The objective of the authors was to design a scalable low area matrix inversion

solution. In [4] authors use adjoint-determinant computation method to calculate the

matrix inversion, which is an extremely restrictive approach in terms of scalability. In

that respect, the LU decomposition approach followed in this report is better.

In [12], Cholesky decomposition method has been used for matrix inversion. The arith-

matic operations involved in Cholesky decomposition includes calculation of square root,

in addition to division, multiplication and subtraction. This would imply additional hard-
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ware utilization as against LU decomposition. The computational complexity is O(N3).

As in LU decomposition, the lower triangular matrix is first derived and subsequently,

two equations viz. LTy = b and Lx = y are solved. The steps closely resemble LU

decomposition method. While Cholesky decomposition is supposed to require only half

the computations of LU decomposition, they require the matrix to be positive definite.

This method does provide an attractive alternative to LU decomposition, though with

increased hardware utilization. However, this report describes a scalable matrix inversion

implementation using LU decomposition with only basic arithmatic operations of addi-

tion, subtraction, multiplication and division, achieving accuracy sufficient for the EKF

implementation.

Briefly, LU decomposition method can be described as follows. Suppose the matrix

inversion equation is represented as

SX = I (2.6)

Matrix S can be factored as a product of upper (U) and lower (L) triangular matrices

such that

LU = S (2.7)

Substituting for S in equation 2.6, we get

LUX = I (2.8)

Substituting

UX = Z (2.9)

in equation 2.8 we get,

LZ = I (2.10)

Once Z is obtained, substituting in equation 2.9

yieldsX, which is the required inverse of the matrix S [10]. The VHDL implementation

of LU decomposition involves three sections viz.

• Factoring of the given matrix to upper (U) and lower (L) triangular parts

• Solving equation 2.10

• Solving equation 2.9
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Each of these three parts uses control path - data path approach. The control path

is a Moore machine. It deals mainly with enabling and clearing different data blocks

towards controlling data flow. The data blocks include counter, comparator, multiplexer,

registers and logicores that perform floating point arithmetic operations. The function-

ality of ‘nested-for’ loops to generate matrix indices, is performed by the counters and

comparators. The mathematical operations to be performed include division, multiplica-

tion, addition and subtraction. Logicores provided by Xilinx have been used to perform

these operations. Registers are used to store the intermediate and final matrices which

include the upper and lower triangular matrices, the Z matrix and finally the inverse or Y

matrix. The pseudocode for obtaining upper and lower triangular matrices are as shown

in listing 2.4.

Figure 2.4 and 2.5 depict the control path and data path for matrix factorization.

The pseudocode for solving equation 2.10 is as shown in listing 2.5.

Figure 2.6 and 2.7 depict the control path and data path for solving the equation 2.10.

The pseudocode for solving equation 2.9 is as shown in listing 2.6.

Figure 2.8 and 2.9 depict the control path and data path for solving the equation 2.9.
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start

load_A_AU

i,j,k=0

clear j

 enable divider  divide over = 0

Save argL

 divide over = 1

compare 
i,j

AL(i,j) is 1

 i=j

AL(i,j) is 0

 i<j AL(i,j) is argL

 i>j

increment_col_j

 gj = 0

increment_row_i

 gj = 1

 gi = 0

save_AU_AL

 gi = 1

done

clear k

 enable multiplier  multiply over = 0

enable subtractor

 multiply over = 1

 subtract over = 0

increment_col_k

 subtract over = 1

 gk = 1

 gk = 0

Figure 2.4: Matrix factorization FSM
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Figure 2.5: Matrix factorization Data Path
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start

i,j,k=0

clear j

clear k

 enable multiplier  multiply over = 0

enable adder

 multiply over = 1

 addition over = 0

increment_col_k

 addition over = 1

 gk = 0

enable subtractor

 gk = 1

 subtract over = 0

clear Acc

 subtract over = 1

increment_col_j

 gj = 0

increment_row_i

 gj = 1

 gi = 0

done

 gi = 1

Figure 2.6: LZ part FSM
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Figure 2.7: LZ part Data Path
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start

i=0, 
j,k= col_size

Init j

Init k

 enable multiplier  multiply over = 0

enable adder

 multiply over = 1

 addition over = 0

decrement_col_k

 addition over = 1

 gk = 0

enable subtractor

 gk = 1

 subtract over = 0

enable divider

 subtract over = 1

 divide over = 0

clear Acc

 divide over = 1

decrement_col_j

 gj = 0

increment_row_i

 gj = 1

 gi = 0

done

 gi = 1

Figure 2.8: UX=Z part FSM
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Figure 2.9: UX=Z part Data Path
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Table 2.4: Pseudocode for matrix factorization

[ mat l , mat u ] = mat t r i (mat a , row , co l )

f o r i =1:1 : row

f o r j =1:1 : c o l

i f ( i==j )

mat l ( i , j ) = 1

end

i f i<j

mat l ( i , j ) = 0

end

i f i>j

mat l ( i , j ) = mat a ( i , j ) / mat a ( j , j )

f o r k=1:1 : c o l

temp = mat l ( i , j ) ∗ mat a ( j , k )

mat u ( i , k)= mat a ( i , k ) − temp

end

mat a = mat u ;

end

end

end
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Table 2.5: Pseudocode for solving equation 2.10

[ a r r z ] = l z ( mat l , row , co l )

f o r k=1:1 : c o l

f o r i =1:1 : row

f o r j =1:1 : c o l

temp = temp + ( mat l ( i , j ) ∗ a r r z ( j , k ) )

end

a r r z ( i , k ) = i d en t i t y ( i , k ) − temp

temp = 0

end

end

Table 2.6: Pseudocode for solving equation 2.9

[ a r r x ] = ux(mat u , a r r z , row , co l )

f o r i =1:1 : c o l

f o r j=row:−1:1

f o r k=co l :−1:1

temp = temp + (mat u ( j , k ) ∗ a r r x (k , i ) )

end

a r r x ( j , i ) = (1 / mat u ( j , j ) ) ∗ ( a r r z ( j , i ) − temp )

temp = 0

end

end
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Chapter 3

Simulations

3.1 Extended Kalman filter simulation

The ground truth for the extended Kalman filter model used in this design, were generated

from a Matlab program. Observations were generated in Matlab by adding noise to the

true state. The true states are used only for the final result comparison. The observations

are however used as test bench inputs to evaluate the error between the states predicted

in EKF estimate and the actual measurement. The input state vector was initialized to

an initial value of

xinit =
[

100 20 95 20
]T

(3.1)

The time factor T in state transition model was set to 1. The covariance matrix was

intitalized to

Pinit =

















10 0 0 0

0 5 0 0

0 0 10 0

0 0 0 5

















(3.2)

The process noise covariance matrix used was

Q =

















5 0 0 0

0 1 0 0

0 0 4.75 0

0 0 0 1

















(3.3)



and the measurement noise covariance matrix used was

R =





10 0

0 0.01745



 (3.4)

The target device was Virtex-6 FPGA (xc6vlx75t-1-ff484). The simulation was run for a

100 time steps and the state updates obtained at each step, was plotted along with state

update values obtained from a pure Matlab simulation and the expected true state at

that time step. The plots thus obtained are as seen in Figures 3.1 to 3.3.
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Figure 3.1: True and estimated x-Position in Extended Kalman filter implementation

From the plots in figures 3.1 to 3.3, it is seen that the x, y positions and xy trajectory

are faithfully captured in the VHDL implementation, similar to the Matlab implementa-

tion and the non-linear tracking response of the VHDL implementation is similar to that

of Matlab implementation.

3.2 Timing and logic utilization

Timing and logic utilization analysis was carried out for the target device xc6vlx75t. The

logic resources available on xc6vlx75t include 11,640 slices, 74,496 logic cells, 93,120 CLB

flip-flops and 288 DSP48E1 Slices.
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Figure 3.2: True and estimated y-Position in Extended Kalman filter implementation
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Figure 3.3: True and estimated xy-trajectory in Extended Kalman filter implementation
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Logicore configuration

The configuration used in the logicores are as summarized in Table 3.1

Table 3.1: Maximum clock cycle latency Logicore configuration

IP core Data format Family Clock cycle Architecture

optimization latency optimization

Multiplier Single Logic only Maximum (8) -

Adder Single Logic only Maximum (12) High speed

Square root Single - Maximum (28) -

Divider Single - Maximum (28) -

Subtractor Single Logic only Maximum (12) High speed

Float to fixed float : Single - Maximum (6) -

fixed : 2 int, 30 fraction

Fixed to float fixed : 3 int, 29 fraction - Maximum (6) -

float : Single

Arc tan 32 bits, radians, truncated - - -

10 iterations, coarse rotation

Logic utilization

Table 3.2 summarises the logic utilization obtained for the Extended Kalman filter imple-

mentation. Computation of Jacobian is a resource intensive process requiring additional

logicore usage for the square root operation. Further, presence of non-linearity in the sys-

tem, necessitates the use of CORDIC logicore and the data format conversion logicores.

This further adds to resource utilization in the FPGA.
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Table 3.2: Logic Utilization in EKF implementation with maximum clock cycle latency

Parameter Actual Used Available Percentage Utilization

Number of slice registers 58348 93120 62%

Number of slice LUT 45481 46560 97%

Number of LUT used as logic 42189 46560 90%

Number used as memory 3292 16720 19%

Number of fully used LUT FF pairs 36443 67386 54%

Number with unused FF in LUT FF pairs 9038 67386 13%

Number with unused LUT in LUT FF pairs 21905 67386 32%

Execution time

From the post synthesis summary, the maximum frequency of operation was obtained as

330.834MHz. The Extended Kalman filter VHDL implementation was executed for 100

iterations. The number of clock cycles needed to execute 100 iterations were 1138650.

Therefore at 330.834MHz, time required for execution is 3441.7562µs. Thus for 1 iter-

ation, the time required for execution is ≈ 34.417µs. Table 3.3 gives the time taken at

different stages in Extended Kalman filter execution.

The Matlab implementation was also timed to get the approximate execution time.

The system on which Matlab code was executed has an Intel core i7 CPU operating at

3.20GHz. It also has cache of 8192KB and has 8 cores. Execution time for a 100 itera-

tions in the Matlab Extended Kalman filter code, took approximately 0.003809seconds.

Therefore, roughly, one run would take ≈ 38.09µs. However, this reading may be far from

accurate as the processor may be executing other processes in between, thereby clocking

different times for different runs. The EKF implementation in [2] reports a maximum op-

erating frequency of 70MHz. However the architecture, design approach and matrix sizes

are totally different and may not be comparable with the implementation in this report.

The hardware-software co-design approach used in [4], has input dimensions similar to the
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implementation in this report. The implementation on Cyclone IV FPGA device, reports

maximum operating frequency of 49.08MHz. Compared to this, the implementation in

this report seems faster. However, the target devices used in the paper and in this work

are not the same and so this comparison may not be sufficient and valid.

Table 3.3: Execution time for various stages in EKF implementation with maximum clock

cycle latency

Stage Time in microseconds Number of clock cycles

State prediction x̂k 1.4162µs 467.5

Jacobian ∇H 0.6089µs 201

arctan( y
x
) 0.2060µs 68

Covariance prediction P̂k 11.3596µs 3750

S 4.3076µs 1422

S−1 2.7899µs 921

Gain 4.3318µs 1430

State update xk 0.8270µs 273

Covariance update Pk 8.6454µs 2854

Variations in the logicore settings in terms of number of cycles latency was made

to estimate the effect of logicore configuration changes on hardware utilization and the

maximum frequency of operation.

Analysis when latency in number of clock cycles is 2

Logicore configuration

The configuration used in the logicores were as summarized in Table 3.4. In addition

to reducing the number of clock cycles in the logicores, DSP blocks were used for the

subtraction logicore. This is because, in the current implementation, the number of
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subtractors used is less as compared to adders or multipliers. Thus the limited DSP

blocks can be used for subtractor logicores.

Table 3.4: Logicore configuration with clock cycle latency of 2

IP core Data format Family Clock cycle Architecture

optimization latency optimization

Multiplier Single Logic only 2 -

Adder Single Logic only 2 High speed

Square root Single - 2 -

Divider Single - 2 -

Subtractor Single full usage of DSP48E 2 High speed

2*DSP48E

Float to fixed float : Single - 2 -

fixed : 2 int, 30 fraction

Fixed to float fixed : 3 int, 29 fraction - 2 -

float : Single

Arc tan 32 bits, radians, truncated - - -

10 iterations, coarse rotation

Logic utilization

Table 3.5 gives the logic utilization obtained for the extended Kalman filter implementa-

tion. It can be seen from the logic utilization that, with lower latency in clock cycles, the

hardware utilization also reduced by a small margin.

Execution time

From the post synthesis summary, the maximum frequency of operation was obtained

as 21.387MHz. The extended Kalman filter VHDL implementation was executed for
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Table 3.5: Logic Utilization in EKF implementation when clock cycle latency is 2

Parameter Actual Used Available Percentage Utilization

Number of slice registers 16116 93120 17%

Number of slice LUT 43296 46560 92%

Number of LUT used as logic 43293 46560 92%

Number used as memory 3 16720 0%

Number of fully used LUT FF pairs 6773 52639 12%

Number with unused FF in LUT FF pairs 36523 52639 69%

Number with unused LUT in LUT FF pairs 9343 52639 17%

100 iterations. The number of clock cycles needed to execute 100 iterations were 505650.

Therefore at 21.387MHz, time required for execution is 23642.867µs. Thus for 1 iteration,

the time required for execution is ≈ 236.4287µs. Table 3.6 gives the time taken at different

stages in extended Kalman filter execution.

From the comparison of performance between maximum clock cycle latency and low (2)

clock cycles latency configurations of EKF implementation, it is seen that with reduction

latency in number of clock cycle, the hardware utilization reduces marginally as seen in

tables 3.2 and 3.5. However, the performance in terms of execution time alters drastically

with an increase of ≈ 7 times. The objective behind looking for lower hardware utilization

mode was to fit the design on the FPGA (xc6vlx75t-1-ff484). However, the deterioration

in performance in terms of speed makes this option unacceptable. As an alternative, the

maximum clock cycle latency design was ported on the next larger version of Virtex 6

FPGA - (xc6vlx130t-1-ff484). The hardware utilization came down by more than 35% as

the resources available on this FPGA is much more. Meanwhile the maximum operating

frequency remained at 330.834MHz, which is by far a more acceptable speed.
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Table 3.6: Execution time for various stages in EKF implementation when clock cycle

latency is 2

Stage Time in microseconds Number of clock cycles

State prediction x̂k 9.8892µs 211.5

Jacobian ∇H 2.2911µs 49

arctan( y
x
) 0.9351µs 20

Covariance prediction P̂k 79.1135µs 1692

S 30.1118µs 644

S−1 16.1313µs 345

Gain 30.9534µs 662

State update xk 5.8447µs 125

Covariance update Pk 61.1589µs 1308
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Chapter 4

Conclusion

This report covers the details of hardware implementation of Extended Kalman filter for

a constant turn model. The design satisfies the requirement of a modular general purpose

design, to a large extent. At individual module level comprising of matrix operations, the

design is scalable. The scalability of the design as a whole still needs to be verified. The

design achieves maximum operating frequency of 330.834MHz. Other implementations

referred to in this report achieve maximum operating frequency of about 70MHz [2] and

50MHz [4]. The EKF implementation is predominantly serial, with only the matrix ad-

dition and matrix subtraction modules being concurrent. With the current architecture,

it is difficult to make the matrix multiplication and the LU decomposition modules con-

current. At each stage of the implementation, there is a stall in data flow to allow for

completion of processing of all data so that the next stage is presented with a complete

data set from the previous stage. Modifications in the architecture to work with partially

available data could keep the data flow continuous and make the hardware work at a

higher clock rate. However, introduction of such an approach would make the design

extremely complex. Also, in order to benefit form the existing logicores, the word length

was maintained at 32 bits, which is largely unnecessary for the current simulations. A

decrease in word length can drastically reduce the execution speed, area and resources

utilized, making for a much lighter and faster design.
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